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Abstract

Cox�s marginal likelihood approach to estimating proportional hazards

for independent durations is semiparametric in that it eliminates the dura-

tion baseline. Successive marginal likelihood contributions are conditional

logit probabilities that the next rank-ordered failure is the next observed

rank-ordered failure. This paper examines the problem of constructing

a valid baseline-free marginal likelihood for the semiparametric estima-

tion of proportional hazards when observations are clustered. It turns out

that the problem is isomorphic to the problem of relaxing the assumption

of independent errors in an extreme-value stochastic utility model. Mc-

Fadden characterizes all discrete choice probability models with univariate

extreme-value disturbances that are consistent with stochastic utility max-

imization. He presents su¢ cient conditions for the joint distribution to be

consistent with stochastic utility maximization. The su¢ cient conditions

describe the set of GEV models. This paper characterizes all marginal

likelihoods for clustered proportional hazards in which the duration base-

line is eliminated from the estimation. It shows further that a su¢ cient

condition for the elimination of the duration baseline is that the proba-

bility that the �rst rank-ordered failure is the �rst observed rank-ordered

failure can be modeled as a GEV probability.
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1 Introduction

Cox (1972, 1975) develops the proportional hazard model of durations and sug-

gests semiparametric estimation using a partial likelihood approach. Durations

are rank-ordered and contributions to the partial likelihood are provided at

each failure time by the subset of the sample at risk immediately before the

failure time. All partial likelihood contributions are conditional logit probabili-

ties. Because the duration baseline is canceled out of the partial likelihood, the

approach has the advantage of being baseline-free: duration-dependence para-

meters, frequently viewed as nuisance parameters, do not have to be estimated.

Researchers interested in duration dependence can recover the duration base-

line in a second step. The case for partial likelihood was strengthened with the

later �nding by Tsiatis (1981) that partial likelihood estimation is equivalent to

marginal likelihood estimation.

The introduction of strati�ed partial likelihood estimation (see Chamber-

lain 1985; Gross and Huber 1987; Andersen, Borgan, Gill, and Keiding 1993;

and Ridder and Tunali 1999) allows for models with group-speci�c duration

baselines. The group-speci�c duration baselines can be recovered in a second

stage, but the coe¢ cients of covariates invariant within groups cannot be recov-

ered. Strati�ed partial likelihood estimation, therefore, does not allow hazard

prediction.

This paper investigates a class of models for baseline-free marginal likeli-

hood for clustered proportional hazards that allows hazard prediction and the

estimation of coe¢ cients of covariates invariant within groups. The starting

point is the work of Hougaard (1986a, 1986b) and the analysis of McFadden

(1978) generalizing the conditional logit model. The class of models represent

an alternative to the class of Generalized Accelerated Failure Time models, on

2



which interesting new analysis has recently been completed by Khan and Tamer

(2007,2010) and Khan, Shin, and Tamer (2010).

When the durations are independent, the mathematical form of the par-

tial (marginal) likelihood contributions is identical to that of the log-likelihood

contributions for the logit model, proposed by Luce (1959) to estimate the

probability that an item is selected from a choice set of alternatives. McFadden

(1974) presents a formal econometric analysis of the conditional logit model.

The model assumes that the stochastic utility of each choice is the sum of a

deterministic component and an extreme-value error term. The model has the

property that the log-odds of any two choices are independent of the availability

or attributes of other alternatives. While the independence of irrelevant alterna-

tives (IIA) property simpli�es the econometric estimation, it is an undesirable

feature in choice settings in which alternatives have close substitutes.

McFadden (1978) introduces a class of multivariate extreme-value distrib-

utions (called generalized extreme-value or simply GEV) that allows the IIA

property to be relaxed. His GEV discrete choice models are consistent with sto-

chastic utility maximization in the sense that choice probabilities are unchanged

when all utilities in the choice set are increased by the same amount.

It turns out that the problem of constructing marginal likelihood approaches

to estimating proportional hazards for clustered observations is isomorphic to

the problem of relaxing the IIA property in an extreme-value stochastic utility

model. Speci�cally, a joint distribution of extreme-value utility shocks is consis-

tent with stochastic utility maximization in a discrete choice model if and only

the joint distribution is a multivariate survivor function for a sample of clustered

proportional hazard durations allowing cancellation of the duration baseline in

the partial (marginal) likelihood. I �rst characterize all partial likelihoods for

clustered proportional hazards in which the the duration baseline is eliminated

from the estimation. I show next that a su¢ cient condition for the elimination

of the duration baseline is that the probability that the �rst rank-ordered failure

is the �rst observed rank-ordered failure can be modeled as a GEV probability.

Section 2 describes the conditional logit model, the IIA property, and the

GEV class of models developed by McFadden. Section 3 presents Cox�s pro-

portional hazard model and the main propositions of this study. Examples of

Cox-McFadden proprtional hazard models are presented in section 4. The main

propositions are proved for the marginal likelihood case in section 5. In sec-

tion 6 the case of tied data is discussed. The recovery of the baseline hazard

is described in section 7. Conclusions are given in section 9. An accompanying
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paper (Ondrich 2010) discusses asymptotic inference.

2 IIA and the GEV Model

The discrete choice model speci�cation that is used most often in applied econo-

metric applications is the conditional logit model. The conditional logit model

provides a simple closed form for the choice probabilities; in contrast, the cal-

culation of the choice probabilities in the multinomial probit model requires

multivariate integration that can only be accomplished through numerical ap-

proximation. The likelihood function for the conditional logit speci�cation is

globally concave, which eases the computational burden of obtaining maximum

likelihood estimates.

In the multinomial logit model, the probability that an individual chooses

choice i from a choice set C consisting of N choices is given by

P (ijC;Z;�) = �i=
P
j2C

�j ;

where Z = (Z1; :::;ZJ) gives the attributes of C, Zj is a K-vector of explana-

tory variables describing the attributes of alternative j (perhaps interacted or

moderated by the characteristics of the decision-maker), � is a K-vector of taste

parameters, and �i stands for eZi�.

The conditional logit model is characterized by the independence of irrel-

evant alternatives (IIA) property, namely, the ratio of probabilities (relative

odds) of choosing any two alternatives is independent of the availability of a

third alternative:

P (ijC;Z;�) = P (ijC0;Z;�)P (C0jC;Z;�); (2.1)

where i 2 C0 � C and

P (C0jC;Z;�) =
X
j2C0

P (jjC;Z;�): (2.2)

A famous example has a commuter choosing between a car and a bus for a

commute. When he is late for work, which happens randomly 1/3 of the time,

he drives (choice A); otherwise he chooses a bus. There are two bus companies,

a red bus company and a blue bus company, indistinguishable but for color.

When he is not late and is waiting for a bus, the �rst bus to arrive is equally
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likely to be blue (choice BB) or red (choice RB). From this information it is

clear that with choice set C = fA;RB;BBg,

P (A) = P (RB) = P (BB) =
1

3
: (2.3)

Now suppose that the blue bus company suspends operations. The choice

set becomes C0 = fA;RBg, which has probability 2/3 by equations (2.2) and
(2.3). With choice set C0 = fA;RBg, the multinomial logit model predicts that

P (A) = P (RB) =
1

2
;

using equations (2.1) and (2.3). But this prediction is not likely to be validated.

The commuter will continue to choose the car whenever he is late, 1/3 of the

time, and will choose the red bus 2/3 of the time, whenever he is not.

It is clear from this example that models with the IIA property are inad-

equate in describing choice from a set of alternatives with di¤erent degrees of

substitutability or complementarity. The red bus and blue bus are perfect sub-

stitutes, whereas the car and the red bus (or the car and the blue bus) are

not. Several studies (McFadden, Train, and Tye 1977, Hausman and McFadden

1984, Small and Hsiao 1985, and McFadden 1987) discuss methods of testing

whether IIA is violated in a given econometric application. The problem is to

construct an alternative model, preferably one with closed forms for the choice

probabilities.

It was solved by McFadden (1978) making using of results derived byWilliams

(1977) and Daly and Zachary (1978) on the compatibility of a given probabilistic

choice model with utility maximization (see Daly and Zachary 1978, or Börsch-

Supan 1987).

Theorem 1 (McFadden): Suppose M(�1; :::; �N ) is a non-negative function
de�ned on the non-negative real numbers with the following three properties:

1) alternating distinct partials, i.e., for any distinct fj1; :::; jQg from the choice

set f1; :::; Ng, the Qth partial @QM=@�j1 :::@�jQ is non-negative if Q is odd and
non-positive if Q is even;

2) in�nite limits, i.e., lim�i!1M(�1; :::; �N ) =1; i = 1; :::; N ; and
3) homogeneity of degree � � 0.
Then, the probabilities

P (ijC;Z; �) = �i
@M(�1; :::; �N )

@�i
=M(�1; :::; �N ); i = 1; :::; N

de�ne a probabilistic choice model on the choice set f1; :::; Ng that is consistent
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with utility maximization.

The function M is McFadden�s negative log copula. A copula is a function

that assigns the value of the joint distribution function to each n-tuple of values

of the marginal distributions. (Andersen 2004 uses copulas to construct a two-

stage semi-parametric estimator for multivariate failure-time data.) I de�ne a

negative log copula to be a function that assigns the value of the negative log

of the joint distribution function to each n-tuple of values of the negative log of

the univariate marginal distributions. McFadden�s negative log copula will be

shown to play a crucial role in specifying the baseline-free partial likelihood and

marginal likelihood for clustered proportional hazards.

3 Proportional Hazards and Two Propositions

The duration or failure time T of a stochastic process is its random age at termi-

nation or failure. The assumption in this study is that durations are continuous

random variables: they possess an absolutely continuous distribution function

F (t). The distribution function is non-defective, i.e., F (1) = 1, and has den-
sity f(t). The unitary complement of the distribution function of a continuous

duration is its survivor function

S(t) � P (T � t) = 1� F (t):

The survivor function represents the probability that the process survives up to

age t and only fails at time t or later.

One of the fundamental concepts in the analysis of continuous durations is

the hazard rate, denoted by h and de�ned by

h(t) � f(t)=(1� F (t)):

The quantity h(t)dt represents the probability that the process fails in the in-

terval [t; t + dt) conditional on survival to age t. It is well known that for a

speci�c h(t), the survivor function and density are given by

S(t) = exp(�
Z t

0

h(u)du) � exp(�H(t))

and

f(t) = h(t) exp(�
Z t

0

h(u)du):
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For a sample of N spells, Cox�s proportional hazard speci�cation assigns to spell

i a hazard rate of the form

hi(tjZ;�) = exp(Zi�)h0(t) � �ih0(t);

where Zi is the covariate vector for spell i, Z = (Z1; :::;ZN ), � is the coe¢ -

cient vector, and h0 is the (unspeci�ed) baseline hazard rate. (I will assume that

the covariate vector is time-invariant, i.e., it does not change with process age.

The principal results of this study allow time-varying covariates, as discussed in

Ondrich 2006.) The integrated baseline hazard rate is de�ned by

H0(t) �
Z t

0

h0(u)du;

so that the survivor function for spell i can be written simply as

Si(t) = exp(��iH0(t)):

In a proportional hazard model the hazard elasticity with respect to any con-

tinuous positive covariate depends only on the value of the covariate and its

coe¢ cient, and does not require additional knowledge of the process age t.

The sample survivor function for the sample of N spells is de�ned as

S(u1; :::; uN jZ;�) � P (T1 � u1; :::; TN � uN ):

It will also be necessary to de�ne marginal survivor functions. The marginal

survivor function of a subset of the N sample spells is derived from the sample

survivor function by setting ui = 0 for all i not in the subset. Alternatively,

denote the subset by A and for each i de�ne Y Ai to be the indicator equal to one

if i is an element of A. Then, letting u be the vector (u1; :::; uN ), the marginal

survivor function is given by

SA(ujZ;�) = S(Y A1 u1; :::; Y AN uN jZ;�):

Of particular interest will be the marginal survivor function SR(t)(t�jZ;�), for
which u is the constant vector t�, where � is the N -dimensional unitary vector,

and the subset of interest is the risk set at time t, denoted R(t), the subset of

sample spells that survive to age t. Note that R(0) is the complete sample of

durations.
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If the N sample durations are statistically independent, the sample survivor

function is

S(ujZ;�) = exp(�
NX
i=1

�iH0(ui));

de�ned on non-negative real N -tuples u. The main propositions in this study

involve samples of clustered durations for which the survivor function takes the

form

S(ujZ;�) = exp(�M(�1H0(u1); :::; �NH0(uN )));

again de�ned on the non-negative realN -tuples u. For all subsetsA of f1; :::; Ng,
the marginal survivor function is

SA(ujZ;�) = exp(�M(Y A1 �1H0(u1); :::; Y AN �NH0(uN ))):

If u is a constant vector and M is homogeneous of degree one, then

M(Y A1 �1H0(t); :::; Y
A
N �NH0(t)); A) = H0(t)M(Y

A
1 �1; :::; Y

A
N �N );

so that for all constant vectors u and sets A,

SA(t�jZ;�) = exp(�H0(t)M(Y A1 �1; :::; Y AN �N ))):

The �nal de�nition that is required for the propositions is that of the hazard

function, which is distinct from a hazard rate. The (multivariate) hazard func-

tion is simply the negative log of the survivor function, while a marginal hazard

function is the negative log of the marginal survivor function.

Proposition 1 If the hazard function M of a sample of N clustered propor-

tional hazards is di¤erentiable and homogeneous of positive degree in its uni-

variate integrated hazard rates �iH0(t), i = 1; :::; N , then the marginal likelihood

is baseline-free and the probability that duration i is the failure at time t from

the set R(t) of durations at risk is given by

P (ijR(t);Z;�) = �i
@M(Y

R(t)
1 �1; :::; Y

R(t)
N �N )

@�i
=M(Y

R(t)
1 �1; :::; Y

R(t)
N �N ):

Proposition 2 The non-negative function M(�1; :::; �N ) is the hazard function
of a sample of N clustered proportional hazards with a baseline-free marginal

likelihood if it satis�es the following three conditions:

1) alternating distinct partials, i.e., for any distinct fj1; :::; jQg from the set
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f1; :::; Ng, the Qth partial @QM=@�j1 :::@�jQ is non-negative if Q is odd and

non-positive if Q is even;

2) in�nite limits, i.e., lim�i!1M(�1; :::; �N ) =1; i = 1; :::; N ; and
3) homogeneity of degree � � 0.

Before proving Propositions 1 and 2, I will present examples of Cox-McFadden

proportional hazard models in the next section.

4 Cox-McFadden Models

This section presents examples of Cox-McFadden models. I assume that the

sample of N individuals can be divided into G independent groups or clusters.

Group g is composed of Ng individuals and is associated with its own negative

log survivor function Mg. Each Mg satis�es the conditions of Propositions 1

and 2, and therefore
GP
g=1

Mg also satis�es these conditions.

The �rst example comes from Hougaard (1986a, 1986b) and results from

positive stable mixing. (See Cardell 1997 for a discussion of positive stable and

related mixing distributions.) Suppose X1; X2; :::; Xn; ::: are independent and

identically distributed. Their common distribution is stable if, for each n; there

exists a constant cn such that cnX1 and
nP
i=1

Xi follow the same distribution. Any

stable distribution has constants cn of the form n1=�, where the characteristic

exponent � 2 (0; 2]. Normal distributions have � = 2 and are the only stable

distributions with �nite variance. The positive stable distributions, i.e., those

which have support on the positive real numbers, all have � 2 (0; 1) with Laplace
transforms, apart from scaling factors, of the form !(�) = exp(���); for � � 0:
If group g shares a common positive stable random e¤ect with characteristic

exponent �, then

Mg(�1; :::; �Ng
) =

 
NgX
i=1

�
1=�
i

!�
;

which satis�es the conditions of Propositions 1 and 2. The function Mg has

the form of the negative log copula for the utility shocks from a single nest in a

nested logit choice model (see McFadden 1978).

Feller (1971) shows that if X1 and X2 are independent stable distributions

with characteristic exponents �1 and �2 (�2 < 1), then X1X
1=�1
2 is stable with

characteristic exponent �1�2: Therefore, if X1 and X2 are both positive stable,

X1X
1=�1
2 is positive stable as well. Hougaard (1986b) uses this to construct a
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nested frailty model in which three siblings share a family e¤ect and the twins

share a �twin�e¤ect.

Sastry (1997) analyzes a nested frailty (using gamma distributions) for child

survival in Brazil , where the data are clustered at both the family and com-

munity levels. Following Hougaard and using positive stable distributions to

construct the nests, the negative log survivor function for community g com-

posed of individuals j, each a member of a family i, is given by

Mg(�1; :::; �Ng
) =

0B@X
i2g

0@X
j2i
�
1=�2
ij

1A�2=�1
1CA
�1

where �1 � �2. McFadden (1978) presents the negative log copula for the utility
shocks from a doubly nested set of choices in a nested logit choice model that

has an identical form. Hierarchies with more than two levels of nesting can be

easily constructed, and non-nested models are also possible.

5 Marginal Likelihood

The discovery that maximization of the marginal likelihood yields the partial

likelihood estimator when durations are independent is important because the

marginal likelihood function is a proper likelihood function to which the usual

asymptotic theory of maximum likelihood directly applies.

Initially, it is assumed that the sample spells are uncensored. Let Ti; i =

1; :::; N; represent the failure times of the N sample spells. Further, let T o0 <

T o1 < ::: < T oN be the ordered failure times and let (i) denote the anti-rank,

namely the label of the spell failing at T oi . Construct two vectors,O = (T o1 ; :::; T
o
N );

the vector of order statistics, and r = ((1); :::; (N)); the vector of rank statis-

tics. Note that the vector of sample failure times, T = (T1; :::; TN ) can be

reconstructed from knowledge of O and r.

Kalb�eisch and Prentice (1980) present an example in which N = 4 and T =

(5; 17; 12; 15). The vector of order statistics for this data is O = (5; 12; 15; 17)

and the vector of rank statistics is r = (1; 3; 4; 2). If the value of the jth component

of r equals i, then Ti is the jth smallest sample failure time, with value given

by the jth component of O.

The fact that the vector of rank statistics carries the sample information

about � when the baseline hazard rate h0 is completely unspeci�ed can be
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demonstrated by a simple argument. The hazard rate for duration i, Ti, in the

proportional hazard model is given by �ih0(t):For all i, de�ne Vi = g�1(Ti),

where g is an arbitrary element of G, the group of di¤erentiable and strictly

increasing transformations of (0;1) into (0;1). Then, given Z and �, the

hazard rate for Vi is given by �ih�0(v);where h
�
0(v) = h0(g(v))g

0(v):This shows

that when the baseline hazard is unspeci�ed, the vector of order statistics can

be modi�ed arbitrarily as long as the vector of rank statistics is unchanged, and

the problem of inference about � has not changed. The estimation problem

for �, given an unspeci�ed baseline, is invariant to (continuous) monotonic

transformations of duration.

The estimation of � can therefore be based on the marginal likelihood of r.

Sample values of the random ordered failure times are (T o1 ; :::; T
o
N ) = (t1; :::; tN ).

When sample durations are independent, the marginal likelihood of r is given

by

P (r = ((1); :::; (N))jZ;�)

= P (T(1) < ::: < T(N)jZ;�)

=

Z 1

0

Z 1

t1

� � �
Z 1

tN�1

NY
i=1

f(tijZ(i);�)dtN � � � dt1:

When durations are clustered, the density for Ti must also be conditioned on

Ai, the event fT(j) > tij j = i+1; :::; Ng;where AN is the null event. Therefore,
in the case of clustered durations,

P (r = ((1); :::; (N))jZ;�) = P (T(1) < ::: < T(N)jZ;�)

=

Z 1

0

Z 1

t1

� � �
Z 1

tN�1

NY
i=1

f(tijAi;Z(i);�)dtN � � � dt1: (5.1)

The multiple integral in equation (5.1) is evaluated recursively, as given byZ 1

0

f(t1jA1;Z(1);�) � � �
Z 1

tN�2

f(tN�1jAN�1;Z(N�1);�)Z 1

tN�1

f(tN jAN ;Z(N);�)dtN dtN�1 � � � dt1:

11



It is required to prove that this integral equals

NY
i=1

�(i)M
[(i)](Y

R(ti)
1 �1; :::; Y

R(ti)
N �N )

M(Y
R(ti)
1 �1; :::; Y

R(ti)
N �N )

;

where the superscript [(i)] denotes the partial derivative with respect to the

argument given by the anti-rank (i). I will prove that the marginal likelihood

equals"
NY
i=1

�(i)M
[(i)](Y

R(ti)
1 �1; :::; Y

R(ti)
N �N )

M(Y
R(ti)
1 �1; :::; Y

R(ti)
N �N )

#
(S0(0))

M(Y
R(0)
1 �1;:::;Y

R(0)
N �N ) ;

where S0(t) is the baseline survivor function exp(�H0(t)): The desired result
then follows from the fact that S0(0) = 1:

To simplify the notation, I will write � for the vector (�1; :::; �N ), and, for

all subsets A of f1; :::; Ng, de�ne

M(�;A) =M(Y A1 �1; :::; Y
A
N �N );

and, for all i = 1; :::; N ,

M [(i)](�;A) =M [(i)](Y A1 �1; :::; Y
A
N �N );

The proof is by induction on the number of integrations performed. Because

AN is the null event, the �rst integration is simply the probability that the

(N)th duration survives to tN�1:"
�(N)M

[(N)](�;R(tN ))

M(�;R(tN ))

#
(S0(tN�1))

M(�;R(tN )) : (5.2)

Euler�s Theorem states that if M(�1; :::; �N ) is homogeneous of degree k,

then kM(�1; :::; �N ) =
NP
i=1

�i
@M

@�i
(�1; :::; �N ) (see Friedman 1971). Therefore,

because only one of the N arguments of M(�1; :::; �N ) is nonzero when the risk

set is R(tN ), the expression in brackets in equation (5.2) equals one.

The induction hypothesis is that the result for the �rst j integrations is24 NY
i=N�j+1

�(i)M
[(i)](�;R(ti))

M(�;R(ti))

35 (S0(tN�j))M(�;R(tN�j+1)) :
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The proof is complete if I show that the result after j + 1 integrations is24 NY
i=N�j

�(i)M
[(i)](�;R(ti))

M(�;R(ti))

35 (S0(tN�j�1))M(�;R(tN�j)) :

Therefore, it must be shown thatZ 1

tN�j�1

f(tN�j jAN�j ;Z(N�j);�) (S0(tN�j))M(�;R(tN�j+1)) dtN�j

=
�(N�j)M

[(N�j)](�;R(tN�j))

M(�;R(tN�j))
(S0(tN�j�1))

M(�;R(tN�j)) : (5.3)

The �rst task is to evaluate f(tN�j jAN�j ;Z(N�j);�):Note that the proba-
bility that spell i survives to ui given that spell j survives to uj for all j 6= i is
given by

S(u1; :::; ui�1; ui; ui+1; :::; uN jZ;�)
S(u1; :::; ui�1; 0; ui+1; :::; uN jZ;�)

:

Hence, the probability that spell (N � j) survives to tN�j given that the re-
maining spells in risk set R(tN�j) exceed tN�j is given by

SR(tN�j)(tN�j�jZ;�)=SR(tN�j+1)(tN�j�jZ;�): (5.4)

The density f(tN�j jAN�j ;Z(N�j);�) is obtained by deriving the numerator
in (5.4) with respect to argument (N � j) and changing the sign:

f(tN�j jAN�j ;Z(N�j);�) = �
S
[(N�j)]
R(tN�j)

(tN�j�jZ;�)
SR(tN�j+1)(tN�j�jZ;�)

: (5.5)

Since the denominator on the right-hand side of equation (5.5) equals (S0(tN�j))
M(�;R(tN�j+1)) ;the

integral in equation (5.3) equals

�
Z 1

tN�j�1

S
[(N�j)]
R(tN�j)

(tN�j�jZ;�)dtN�j : (5.6)

The partial derivative inside the integral of (5.6) equals

�(N�j)M
[(N�j)](�;R(tN�j))h0(tN�j) exp(�H0(tN�j)M(�;R(tN�j)): (5.7)

Substituting (5.7) into (5.6), multiplying inside the integral byM(�;R(tN�j))
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and outside the integral by its reciprocal, yields

�
�(N�j)M

[(N�j)](�;R(tN�j))

M(�;R(tN�j))
�

Z 1

tN�j�1

h0(tN�j)M(�;R(tN�j)) exp(�H0(tN�j)M(�;R(tN�j))dtN�j : (5.8)

The integrand in (5.8) equals

d (S0(tN�j))
M(�;R(tN�j))

dtN�j
; (5.9)

and therefore the integral equals � (S0(tN�j�1))M(�;R(tN�j)) :Substituting

the evaluated integral into (5.8) yields the right-hand side of equation (5.3).

The proof is complete for the case of no censoring.

When sample spells can be censored, the data vector for the iith duration is

(Xi; �i;Zi), where again Xi = min(Ti; Ui) for uninformative censoring time Ui
independent of Ti, and �i is the censoring indicator equal to one whenXi = Ui <

Ti and zero otherwise. Let Xo
1 < ::: < Xo

N represent the ordered observation

times, and de�ne O� = (Xo
1 ; :::; X

o
N ). Let r� = ((1)�; :::; (N)�) denote the

vector of corresponding anti-ranks, and let �� = (�(1)� ; :::; �(N)�) denote the

vector of ordered censoring indicators. Just as in the uncensored case where

T = (T1; :::; TN ) can be reconstructed from knowledge of (O; r), here in the

case where spells may be censored, (X; �), where X = (X1; :::; XN ) and � =

(�1; :::; �N ), can be reconstructed from knowledge of (O�; r�; ��).

As an example, suppose X = (5; 17; 12; 15) and � = (0; 1; 1; 0). Then,

O� = (5; 12; 15; 17), r� = (1; 3; 4; 2), and �� = (0; 1; 0; 1). If the value of the

jth component of r� equals i, then Xi is the jth smallest sample failure time,

with value given by the jth component of O�. Similarly, the ith component of

� equals one if and only if the value of the jth component of r� equals i and the

value of the jth component of �� equals one. The value of the ith component

of � equals zero otherwise.

Kalb�eisch and Prentice (1980) explain that some modi�cation to the mar-

ginal likelihood is necessary in the presence of general uninformative indepen-

dent censoring. The censored model will not in general possess the group invari-

ance properties. When censoring occurs in the sample, the rank information is

incomplete. In the example above, the vector of rank statistics, r, is known to

be either (1; 3; 4; 2), (1; 4; 3; 2), or (1; 4; 2; 3); it seems reasonable to estimate �

14



using the marginal likelihood that the vector of rank statistics is one of those

observationally possible. Doing so ignores the exact time of censoring, but the

invariance property of the uncensored model demonstrates that the time be-

tween failures is irrelevant. Therefore, in a model with L failures, the marginal

likelihood is adjusted as follows:

P (r = ((1); :::; (L))jZ;�)

= P (T(1) < ::: < T(L)jZ;�)

=

Z 1

0

Z 1

t1

� � �
Z 1

tL�1

LY
i=1

f(tijAi;Z(i);�)dtL � � � dt1:

It is clear from the demonstration in the uncensored case that the marginal

likelihood equals
LY
i=1

�(i)M
[(i)](�;R(ti))

M(�;R(ti))
:

The proof of Proposition 1 for the marginal likelihood in the presence of cen-

soring is complete.

To prove Proposition 2 for the marginal likelihood, it su¢ ces to show that

S(u1; :::; uN jZ;�) = exp(�M(�1H0(u1); :::; �NH0(uN )))

is a valid multivariate survivor function. There are three conditions that must

be satis�ed. First, S(0; :::; 0jZ;�) = 0. Second, for any i = 1; :::; N , as ui limits
to in�nity, S(u1; :::; uN jZ;�) limits to zero.
The third condition is more technical. De�ne Xi = �Ti and xi = �ui, for

i = 1; :::; N . Then

S(u1; :::; uN jZ;�) = P (T1 � u1; :::; TN � uN )

= P (X1 � �u1; :::; XN � �uN )

= P (X1 � x1; :::; XN � xN ):

The last line is a cumulative distribution function,which is known to have non-

negative distinct partials (see, for example, McFadden 1978). Distinct partials of

the cumulative distribution function with respect to �ui are also non-negative.
Therefore, the third condition is that distinct partials of the multivariate sur-

vivor function with respect to ui alternate in sign, with �rst partials being
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non-positive.

To prove the �rst condition for a multivariate survivor function, note that as

(u1; :::; uN ) limits to the zero vector, so does (H0(u1); :::;H0(uN )). Therefore,

by the homogeneity of degree � � 0 of M , it follows that S(0; :::; 0jZ;�) = 0.
To prove the second condition for a multivariate survivor function, note that

as ui limits to in�nity, the univariate marginal survivor function exp(��iH0(ui))
must limit to zero. Then the second condition of Proposition 2 guarantees that

S(u1; :::; uN jZ;�) limits to zero as well.
Because dH0(ui)=dui is non-negative, to prove the third condition for a

multivariate survivor function, it is su¢ cient to demonstrate that the distinct

partials of exp(�M(�1; :::; �N )) with respect to the �i alternate in sign, with �rst
partials being non-positive. The proof is by induction on Q. It is obviously true

for Q = 1: Any Qth partial derivative is a sum of terms for which the ith term

is of the form �ie
�M , where �i is some product of distinct partial derivatives

of M . Thus, any (Q + 1)th partial derivative is the sum of terms of the form

�iDje
�M + e�MDj�i, where Dj is the operator for the partial derivative with

respect to the jth argument. Clearly, �iDje
�M is of opposite sign to �ie

�M

because the �rst partials of e�M are nonpositive. On the other hand, Dj�i
is evaluated by the chain rule, and is of opposite sign to �i, because taking

the partial derivative of each partial of M involves a sign change by the �rst

condition of Proposition 2. Therefore, the third condition for a multivariate

survivor function is satis�ed, and Proposition 2 is proved.

6 Ties in the Data

Although durations are continuous, the recording of durations will always in-

volve some measurement error, and ties may result. This is problematic be-

cause both the partial likelihood and marginal likelihoods require the data to

be completely rank-ordered. To incorporate tied data into the analysis, the

same approach can be used as in the case of censoring.

Suppose that there are mi spells ( mi � 1) at each of the L ordered observed

failure times, ti, where
LP
i=1

mi = N . Assuming the ties to result from the

grouping of durations in the continuous model, the information available on the

rank vector is incomplete. While it is known that the ranks of durations failing

at ti are lower than those failing at tj whenever i < j, the ranks of the mi

durations failing at ti cannot be known. The marginal likelihood in this case
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should specify the likelihood that the rank vector is one of those possible.

In their discussion of the case of independent durations, for whichM(�1; :::; �N ) =
NP
i=1

�i, Kalb�eisch and Prentice (1980) point out that the calculation can be

simpli�ed somewhat by recognizing that the ranks assigned to the mi durations

failing at ti do not depend on the ranks assigned to themj durations failing at tj .

The sum then becomes the product of L weighted sums. Let �i be the set of per-

mutations of the labels of the mi durations failing at ti and let � = (�1; :::; �mi
)

be an element of �i. As before, R(ti) is the risk set at time ti. De�ne R(ti; �
r)

to be the set di¤erence R(ti)� f�1; :::; �r�1g and D(ti) = R(ti)�R(ti+) to be
the set of durations failing at ti.

Then, the marginal likelihood for � can be expressed as

LY
i=1

0B@ Y
j2D(ti)

�j
X
�2�i

0B@miY
r=1

24 X
l2R(ti;�r)

�l

35�1
1CA
1CA : (6.1)

Because the summation in the marginal likelihood is over all permutations

of labels of the tied durations, its computation may be burdensome if there are

a large number of ties at any failure time. When the number of durations failing

at each ti is small relative to the number in the corresponding risk set R(ti),

Peto (1972) and Breslow (1974) claim that (6.1) can be approximated using

LY
i=1

0BBBB@
Y

j2D(ti)

�j P
l2R(ti)

�l

!mi

1CCCCA :

Efron (1977) suggests an alternative approximation that takes into account that

distinct summations
P

l2R(ti;�r)
�l will have greater multiplicity the lower is the

value of r:

LY
i=1

0BBBB@
Y

j2D(ti)

�j

miY
r=1

  P
l2R(ti)

�l

!
� (r � 1)

mi

 P
l2D(ti)

�l

!!
1CCCCA :

Kalb�eisch and Prentice (1980) suggest using a semi-parametric model formed

by grouping failure times whenever the ratio of mi to the size of the risk set
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R(ti) is high for any failure time (see Prentice and Gloeckler 1978, and Meyer

1990).

The case in which durations are clustered is more complicated. The marginal

likelihood for � becomes

LY
i=1

X
�2�i

 
miY
r=1

��rM
[�r](�; R(ti; �

r)) [M(�; R(ti; �
r))]

�1
!
: (6.2)

When the number of durations failing at each ti is small relative to the

number of spells in the corresponding risk set R(ti), (6.2) can be approximated

using

LY
i=1

0BBB@
Y

j2D(ti)

�jM
[j](�; R(ti))

(M(�; R(ti)))
mi

1CCCA :

Finally, the following alternative approximation takes into account that dis-

tinctM(�; R(ti; �
r)) in (6.2) will have greater multiplicity the lower is the value

of r:

LY
i=1

0BBBB@
Y

j2D(ti)

�jM
[j](�; R(ti))

miY
r=1

 
M(�; R(ti))�

(r � 1)
mi

 P
l2D(ti)

�lM [l](�; R(ti))

!!
1CCCCA :

7 Recovering the Baseline

Breslow (1972) develops a methodology for recovering the duration baseline

from the marginal likelihood estimates for a sample of independent durations.

Breslow explains that the Kaplan-Meier estimate can be derived in a maximum

likelihood framework by assuming that the hazard is constant between successive

observed failure times:

h0(t) = �i; ti�1 < t � ti; i = 1; :::; L: (7.1)

He notes that this approach is used by Grenander (1956) to derive maximum

likelihood estimates for the monotone hazard class. Breslow next adopts the

convention of considering all censored durations as censored at the previous

uncensored failure time. Breslow�s estimator for �i is the maximum likelihood
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estimator for the resulting likelihood (see Kalb�eisch and Prentice 1980):

LY
i=1

h0(ti)
mi

0@ Y
j2D(ti)

�j

1A exp(�Z t

0

h0(u)du
X

j2
(ti)

�j) ;

where 
(ti) is the set of durations either failing or censored at ti. Substituting

in from equation (7.1) and rearranging terms gives

LY
i=1

�mi
i

0@ Y
j2D(ti)

�j

1A exp(��i(ti � ti�1) X
j2R(ti)

�j) :

Since �j = exp(Zj�), the maximum likelihood estimator of �i for any value of

� is therefore b�i = mi

(ti � ti�1)
P

j2R(ti)
exp(Zj�)

;

and the estimate of the cumulative baseline hazard H0(t) =
R t
0
h0(u)du, evalu-

ated at ti is bH0(ti) = iX
l=1

mlP
j2R(tl)

exp(Zj�)
:

The estimators of �i and H0(t) can both be evaluated at the value of � that

maximizes the marginal likelihood.

When durations are clustered, the likelihood becomes

LY
i=1

�mi
i

0@ Y
j2D(ti)

�jM
[j](�; R(ti))

1A exp(��i(ti � ti�1)M(�; R(ti))) :
The maximum likelihood estimator of �i for any value of � is

b�i = mi

(ti � ti�1)M(�; R(ti))
;

and the estimate of the cumulative baseline hazard evaluated at ti is

bH0(ti) = iX
j=1

mj

M(�; R(tj))
:
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8 Conclusions

Cox (1972, 1975) develops the proportional hazard model of durations and sug-

gests semiparametric estimation that does not specify a duration baseline using

a partial likelihood approach. Contributions to the partial likelihood are pro-

vided at each failure time by the subset of the sample at risk immediately before

the failure time. For researchers interested in duration dependence, the dura-

tion baseline can be recovered in a second step. The case for partial likelihood

was strengthened with the later �nding by Tsiatis (1981) that partial likelihood

estimation is equivalent to marginal likelihood estimation.

This paper examines the problem of estimating model parameters in a clus-

tered proportional hazard model, leaving the baseline hazard unspeci�ed. It

turns out that the problem is isomorphic to the problem of relaxing the as-

sumption of independent errors in an extreme-value stochastic utility model.

McFadden characterizes all discrete choice probability models with univariate

extreme-value disturbances that are consistent with stochastic utility maximiza-

tion. He presents su¢ cient conditions for the joint distribution to be consistent

with stochastic utility maximization. The su¢ cient conditions describe the set

of GEV models. This paper characterizes all marginal likelihoods for clustered

proportional hazards in which the the duration baseline is eliminated from the

estimation. It shows further that a su¢ cient condition for the elimination of

the duration baseline is that the probability that the �rst rank-ordered failure

is the �rst observed rank-ordered failure can be modeled as a GEV probability.

The marginal likelihoods allow independent censoring and I discuss approx-

imations to the marginal likelihoods in the presence of ties.

An appendix on asymptotic inference (Ondrich 2010) can be found at http://faculty.maxwell.syr.edu/jondrich.

This appendix makes three contributions. First, the theory of multiplicative in-

tensity models supports the incorporation of time-varying covariates. Second,

consistency and asymptotic normality of the model parameters follow directly

from the previous work of Andersen and Gill (1982) for the partial likelihood

with independent observations. With independent observations the marginal

likelihood is globally concave, which is not the case with clustered observa-

tions. However, the results carry over to the case of clustered observations if

one considers an open ball containing the true value of the relevant parameter

vector, over which ball the marginal likelihood is strictly concave. Third, an

asymptotically correct variance matrix for the marginal likelihood estimator of

the vector 
 of model parameters (excluding duration-baseline parameters) is
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I�1(b
)O(b
)I�1(b
), where O(b
) is a weighted outer product of scores and I(b
)
is the empirical information matrix.
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